Halogenated Cyclic Peptides Isolated from the Sponge Corticium sp.

Damian W. Laird, ${ }^{\dagger}$ Daniel V. LaBarbera, ${ }^{\dagger}$ Xidong Feng,${ }^{\dagger}$ Tim S. Bugni, ${ }^{\dagger}$ Mary Kay Harper, ${ }^{\dagger}$ and Chris M. Ireland ${ }^{*}, \dagger$
Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, and Wyeth Research, Pearl River, New York 10965

Received October 4, 2006

Abstract

Fractionation of two Fijian specimens of the sponge Corticium sp. led to the isolation of the known active alkaloid steroid plakinamine A and two new halogenated cyclic peptides, corticiamide A (1) and cyclocinamide B (2). Structural elucidation of $\mathbf{1}$ and $\mathbf{2}$ was achieved by an extensive combination of high-field NMR and HRFT MS/MS experiments, and the absolute stereochemistry of 2 was determined by acid hydrolysis and Marfey's analysis. Corticiamide A (1) and cyclocinamide B(2) represent the first peptides to be described from the genus Corticium.

The sponge genus Corticium is widespread in warm temperate to tropical waters of the world's oceans, yet compounds isolated from the genus are far from prevalent within the chemical literature. To date, only two main structural motifs have been reported: the polycyclic meridene ${ }^{1}$ and a number of steroidal alkaloids, including members of the plakinamine family ${ }^{2-6}$ and two unusual steroids containing a seven-membered B ring. ${ }^{7}$ Almost all reported Corti-cium-derived compounds have exhibited in vitro bioactivity. For example, meridene is a potent antifungal compound, ${ }^{1}$ plakinamine derivatives exhibit significant in vitro cytotoxic activity ${ }^{6}$ and slight HIV activity, ${ }^{5}$ and the lokysterolamines have been reported to be cytotoxic, antimicrobial, and antifungal agents. ${ }^{2}$ Recently, an additional class of steroidal alkaloids from Corticium simplex has been described that shows antiproliferative activity as well as antiangiogenic activity. ${ }^{8}$ Fractionation of Corticium sp. collected from Fiji in the years 2001-2004 inclusive led to the isolation of plakinamine A and two new cyclic peptides, corticiamide A (1) and cyclocinamide B (2). Structural elucidation of the two new peptides was achieved by extensive use of NMR and FTMS/MS experiments, and the absolute stereochemistry of cyclocinamide B (2) was determined by Marfey's analysis. Corticiamide A (1) and cyclocinamide B(2) are the first peptides, and the first halogenated compounds, to be isolated from a species of Corticium.

Results and Discussion

The crude methanol extract of the 2002 collection of the Fijian Corticium sp. was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the bioactive EtOAc-soluble material was separated on HP20 resin, resulting in five fractions. Fraction 3 was the most active and was separated by HPLC, yielding 0.8 mg of corticiamide A (1) as a pale yellow oil. Monoisotopic peaks for the doubly charged molecular ions $[\mathrm{M}+2 \mathrm{H}]^{2+}$ and $[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+}$ were detected at $\mathrm{m} / \mathrm{z} 948.32495$ and 959.31633 in positive mode nanoelectrospray FTMS, corresponding to a neutral monoisotopic mass of 1894.63617. On the basis of accurate mass measurements of the molecular and fragment ions, a molecular formula of $\mathrm{C}_{80} \mathrm{H}_{112} \mathrm{Br}_{2} \mathrm{~N}_{20} \mathrm{O}_{22} \mathrm{~S}$ was determined for the neutral molecule. Interpretation of 1D and 2D NMR spectra $\left({ }^{1} \mathrm{H}, \mathrm{TOCSY}, \mathrm{gHSQC}\right.$, and gHMBC) resulted in the identification of 14 partial structures. Eight standard amino acid residues were identified as Ala, Val, two Thr, Pro, Trp, Gly, and Arg. In addition, a formamide moiety was determined by the presence of a signal in the HSQC spectrum for a methine with shifts at $\delta_{\mathrm{H}} 7.89$ and $\delta_{\mathrm{C}} 161.2$. The presence of two ortho-coupled proton signals at $\delta_{\mathrm{H}} 7.25$ and 7.40 in the ${ }^{1} \mathrm{H}$ NMR spectrum suggested a para-substituted phenyl ring. Correlations in the HMBC

[^0]spectrum from the ortho-coupled aromatic protons to two quaternary carbons ($\delta_{\mathrm{C}} 120.2$ and 137.6) suggested a $p-\mathrm{Br}$ substitution. TOCSY correlations from an $N \mathrm{H}\left(\delta_{\mathrm{H}} 7.94\right)$ to a methine at $\delta_{\mathrm{H}} 4.73$ and a diastereotopic methylene $\left(\delta_{\mathrm{H}} 2.73, \delta_{\mathrm{H}} 3.01 ; \delta_{\mathrm{C}} 38.8\right)$, in combination with an HMBC correlation from this methylene to aromatic carbons ($\delta_{\mathrm{C}} 132.5$ and 137.6) established this residue as $p-\mathrm{Br}-\mathrm{Phe}$. A second $p-\mathrm{Br}$-Phe residue was identified in a similar manner. The cysteic acid residue was proposed on the basis of the downfield ${ }^{13} \mathrm{C}$ chemical shifts ($\delta_{\mathrm{C}} 51.6$ and 53.0) of an observed $\mathrm{NH}-\mathrm{CH}-\mathrm{CH}_{2}$ spin system and was confirmed by MS studies (vide infra). The β-Me-Ile residue was determined by HMBC correlations from an sp^{3}-hybridized quaternary carbon $\left(\delta_{\mathrm{C}} 37.5\right)$ to three methyl groups, one of which had an upfield ${ }^{13} \mathrm{C}$ shift at $\delta_{\mathrm{C}} 8.7$, a methylene, and an $\mathrm{NH}-\mathrm{CH}$. An $N-\mathrm{Me}-\mathrm{Gln}$ was identified starting from an HMBC correlation between an N-methyl ($\delta_{\mathrm{H}} 2.93, \delta_{\mathrm{C}} 30.5$) and a methine ($\delta_{\mathrm{C}} 54.9$) that was part of a $-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ TOCSY spin system. An HMBC correlation from the γ-methylene to the δ-carbonyl ($\delta_{\mathrm{C}} 174.0$) provided additional support for the N-MeGln. An HMBC correlation from a second N-methyl ($\delta_{\mathrm{H}} 2.60, \delta_{\mathrm{C}}$ 29.2) to a methine ($\delta_{\mathrm{C}} 56.7$) that was part of a $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ spin system was consistent with an N -Me-Asn. HMBC correlations from the methylene protons $\left(\delta_{\mathrm{H}} 2.34,2.84\right)$ to the γ-carbonyl ($\delta_{\mathrm{C}} 171.5$) confirmed by the presence of N -Me-Asn. The linear sequence of $\mathbf{1}$ was deduced from inter-residue ROESY correlations (see Figure 1) in conjunction with MS experiments.

Attempts to confirm the structure using ESI FTMS/MS experiments were conducted concurrently with the NMR-based structure elucidation. FTMS/MS experiments using sustained off-resonance irradiation with collision-induced dissociation (SORI-CID) were crucial to solving the planar structure of $\mathbf{1}$, as it enabled accurate mass measurements of MS/MS daughter ions, resulting in the assignment of specific molecular formulas for many fragments. ${ }^{9}$ The SORI-CID mass spectrum of the isolated $[\mathrm{M}+2 \mathrm{H}]^{2+}$ at m / z 948 is shown in Figure 2. The majority of the fragmentation occurred in the linear region of the peptide, and the most abundant fragment ion ($\mathrm{m} / \mathrm{z} 786^{2+}$) was produced through cleavage of the amide bond on the N-terminal side of the Pro residue. Cleavage of the N -terminal to a Pro residue has been widely observed and documented as the major fragmentation site for many peptides, ${ }^{10}$ and the fragmentation pattern observed provides support for the assignment of a Pro at residue 3. The neutral loss between $\mathrm{m} / \mathrm{z} 948$ $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$ and $m / z 786^{2+}$ could be assigned the elemental composition $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$, corresponding to $\mathrm{HCO}-\mathrm{Ala}-\mathrm{pBr}$-Phe. The Pro residue could be unambiguously assigned by the observation of the b_{3} ion. Detection of the b_{4} and b_{5} ions, together with their complementary $\mathrm{y}_{10}{ }^{\prime \prime}$ and $\mathrm{y}_{9}{ }^{\prime \prime}$ ions, resulted in the sequence assignment of a β-MeIle-Val fragment after the Pro residue. Unique elemental compositions were determined on the basis of accurate mass measurements for these relatively small b_{3}, b_{4}, and b_{5} fragment

Chart 1

ions and were supported by an observed isotopic distribution characteristic of the presence of one Br atom. The sequence was easily extended to Trp and Arg on the basis of the y-series fragment ions. Unique elemental compositions could not be determined for these relative large y-series fragment ions, but the mass difference between adjacent y-series fragment ions was easily assigned a unique elemental composition based upon accurate mass measurements.

The peptide sequence could not be followed after Arg using fragmentation of the molecular ion, as neither b_{8} nor its complementary $\mathrm{y}_{6}{ }^{\prime \prime}$ ion (cleavage of $\mathrm{CysO}_{3} \mathrm{H}-\mathrm{Thr}$) was detected in the positive mode FTMS SORI-CID mass spectrum. Therefore, the abundant doubly charged $\mathrm{y}_{12}{ }^{\prime \prime}$ ion, $m / z 786^{2+}$, was isolated and fragmented using SORI-CID. Although the sequence immediately after Arg could not be determined, due again to the lack of fragment ions from the cleavage of $\mathrm{CysO}_{3} \mathrm{H}-\mathrm{Thr}$, the connection of Gly$N$ MeAsn-Thr- p BrPhe- N MeGln was established by detection of the following series of ions: $m / z, 143.08176\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right), 368.06100$ $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{3}{ }^{+}\right), 469.10886\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BrN}_{4} \mathrm{O}_{5}{ }^{+}\right), 597.16707\left(\mathrm{C}_{24} \mathrm{H}_{34^{-}}\right.$ $\left.\mathrm{BrN}_{6} \mathrm{O}_{7}^{+}\right)$, and $654.18813\left(\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrN}_{7} \mathrm{O}_{8}{ }^{+}\right)$. Once again, unique elemental compositions were determined for each ion on the basis
of observed accurate mass measurements for these relatively small fragment ions and supported by the detected isotopic distribution (four of them are characteristic of one Br atom). Complementary ions to the $m / z 469$ and 597 ions were also detected at m / z $1103.53108\left(\mathrm{C}_{48} \mathrm{H}_{75} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{~S}^{+}\right)$and $975.47237\left(\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{~S}^{+}\right)$, respectively, further supporting the proposed sequence connection. Detailed examination of the SORI-CID mass spectrum for the isolated $\mathrm{m} / \mathrm{z} 786^{2+}$ ion indirectly suggested the presence of a $\mathrm{CysO}_{3} \mathrm{H}-\mathrm{Thr}$ fragment. First, the elemental composition for the difference between the two major fragment ions $m / z 666$ and 975 could be assigned as $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ (expt 309.06370, calcd 309.06307, $\Delta=0.63 \mathrm{mmu}$), corresponding to $\mathrm{CysO}_{3} \mathrm{H}-\mathrm{Thr}-\mathrm{Gly}$, and second, the observed $\mathrm{m} / \mathrm{z} 818$ ion could be explained as the loss of $\mathrm{SO}_{3} \mathrm{H}_{2}$ from the $m / z, 900$ ion, which itself could be explained as resulting from the $m / z, 975$ ion by the loss of Gly and $\mathrm{H}_{2} \mathrm{O}$.

Assignment of $\mathrm{Cys}\left(\mathrm{O}_{3} \mathrm{H}\right)$ adjacent to Arg was made unambiguously by the detection of the $\mathrm{y}_{6}{ }^{\prime \prime}$ ion in the SORI-CID mass spectrum of the isolated singly charged deprotonated molecular ion at $m / z 1893^{-}$. The difference between $m / z 753^{-}$($\mathrm{y}_{6}^{\prime \prime}$) and $m / z .904^{-}$ ($\mathrm{y}_{7}{ }^{\prime \prime}$) was accurately measured, resulting in a unique elemental composition corresponding to $\mathrm{Cys}\left(\mathrm{O}_{3} \mathrm{H}\right)$. The peptide sequence in

N -Me-Asn
Figure 1. Planar structure of corticiamide A (1). Bold bonds represent TOCSY correlations; arrows, selected HMBC correlations; and lines, selected NOEs.

$\mathrm{b}_{2}-\mathrm{H}_{2} \mathrm{O}$	Expt.: 307.00762		$\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{BrN}_{9} \mathrm{O}_{14} \mathrm{~S}^{1+}$		$\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{BrN}_{13} \mathrm{O}_{15} \mathrm{~S}^{1+}$	$\mathrm{y}_{9}{ }^{\prime \prime}$	Expt.: 1248.41018
	Calc.: 307.00767	$\mathrm{y}_{7}{ }^{\prime \prime}$	Exptl: 906.22826	y_{8}	Expt.: 1062.33051		Calc.: 1248.41018

$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{4}{ }^{1+}$
b_{3} Expt.: 422.07086
Calc.: 422.07100
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BrN}_{4} \mathrm{O}_{5}{ }^{1+}$
b_{4} Expt.: 549.17059
Calc.: 549.17126
$\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{BrN}_{5} \mathrm{O}_{6}{ }^{1+}$
b_{5} Expt.: 648.23916
Calc.: 648.23967
$\mathrm{C}_{47} \mathrm{H}_{65} \mathrm{BrN}_{11} \mathrm{O}_{8}{ }^{1+}$
\mathbf{b}_{7} Expt.: 990.41925
Calc.: 990.41955

Figure 2. HR SORI-CID mass spectral analysis of major fragments for corticiamide A (1).

Figure 3. Major MS fragments of cyclocinamide B (2).
the linear portion of $\mathbf{1}$, determined on the basis of FTMS/MS of the doubly charged protonated $[\mathrm{M}+2 \mathrm{H}]^{2+}$ molecular ion, was identical to that based on the FTMS/MS of the singly charged deprotonated $[\mathrm{M}-\mathrm{H}]^{-}$molecular ion, providing additional support for the sequence assignment.

Both MS and NMR data supported the linear sequence of $\mathbf{1}$. However, the molecular formula assigned demanded 34 units of unsaturation, and only 33 were accounted for above, which implied the presence of an additional ring. The chemical shift for the β-proton of Thr- 1 was shifted downfield to $\delta_{\mathrm{H}} 5.22$, typical of a threonine involved in an ester linkage, ${ }^{11-15}$ suggesting the site of cyclization. Observation of an HMBC correlation from the β-proton of Thr- 1 to the Gly amide carbon ($\delta_{\mathrm{C}} 169.0$) confirmed that $\mathbf{1}$ was a cyclic depsipeptide.

Corticiamide A (1) is a member of a family of structurally related peptides that include the discodermins, ${ }^{16-18}$ halicylindramides, ${ }^{19,20}$ polydiscamide A, ${ }^{21}$ and microspinosamide A. ${ }^{22}$ However, corticiamide $\mathrm{A}(\mathbf{1})$ is the only member of the family to contain a p - Br -Phe at residue 11, and no other examples are known to contain an N-MeAsn. Microspinosamide A and polydiscamide A contain the unusual β-Me-Ile at residue 6 , whereas the same amino acid is found at residue 5 in $\mathbf{1}$. Based upon these differences, the trivial name corticiamide A is proposed for $\mathbf{1}$. All previously reported compounds in this class have a mixture of D and L amino acids. Unfortunately, due to the small amount of $\mathbf{1}$ isolated, the absolute stereochemistry of the molecule was not determined nor was the bioactivity evaluated.

The crude methanol extract of a 2001 collection of Corticium was partitioned (see Experimental Section), and the CHCl_{3}-soluble portion was separated using C_{18} flash chromatography $\left(\mathrm{H}_{2} \mathrm{O}\right.$ to $\mathrm{CH}_{3}-$ OH gradient), resulting in 13 fractions. While preparing fraction 10 for preliminary ${ }^{1} \mathrm{H}$ NMR analysis, a portion of the material was not soluble in $\mathrm{CD}_{3} \mathrm{OD}$, and further investigation revealed that this waxy, white substance was soluble in DMSO. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the DMSO-soluble material indicated that the compound was of high purity, and a full structural elucidation was undertaken. The combination of six carbonyl signals in the range $\delta 169.4$ to 173.5 in the ${ }^{13} \mathrm{C}$ spectrum (Table 2), typical of amide carbonyls, suggested that compound $\mathbf{2}$ was most likely a peptide.

The mass spectrum obtained with ESI-FTMS indicated that the compound contained multiple halogens, and SORI-CID experiments on the isolated monoisotopic molecular ion as well as the daughter ion $\mathrm{m} / \mathrm{z} 535$ established the molecular formula of $\mathbf{2}$ as $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{8}-$ BrCl_{2} using the top-down, bottom-up approach (expt 784.10084, calc 784.10070). ${ }^{9}$ Analysis of 1D and 2D NMR data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, TOCSY, gHSQC-TOCSY, gHSQC, and gHMBC) led to the identification of six partial structures. A broad doublet at δ_{H} 11.1 and an upfield quaternary carbon at 111.8 suggested a $5-\mathrm{Br}$ tryptophan residue ($5-\mathrm{Br}-\mathrm{Tr}$). Comparison with published data ${ }^{23-25}$ confirmed the assignment of the 5 -Br-Trp. HSQC-TOCSY correlations from the methine carbon at $\delta_{\mathrm{C}} 70.4\left(\delta_{\mathrm{H}} 4.04\right)$ to an $N \mathrm{H}$ ($\delta_{\mathrm{H}} 7.05$), a diastereotopic methylene ($\delta_{\mathrm{H}} 3.35,3.48$), and a hydroxyl ($\delta_{\mathrm{H}} 6.00$) indicated the presence of isoserine (iSer). TOCSY correlations were used to establish a spin system incorporating $\mathrm{NH}-\mathrm{CH}_{2}-$ $\mathrm{CH}-\mathrm{NH}$, resulting in the assignment of a 1,2-diaminopropionic acid (DAP) residue. Using these spin systems for a database search resulted in cyclocinamide A (3). A comparison of NMR data in conjunction with the MS data indicated that cyclocinamide B (2) contained a dichloropyrrole instead of the monochloropyrrole found in cyclocinamide A (3). HMBC correlations from the aromatic methine singlet at $\delta 7.02$ to the high-field carbonyl ($\delta 161.0$), and two quaternary carbons ($\delta 125.2$ and 119.2), established the aromatic methine at position 3 of the pyrrole, and the upfield ${ }^{13} \mathrm{C}$ chemical shift ($\delta 112.2$) suggested an adjacent Cl substitution. Thus, the second Cl was located at position 5 on the pyrrole, leading to the elucidation of an N -Me-2-carbonyl-4,5-dichloropyrrole moiety.

Since cyclocinamide A (3), which was isolated from Psammocinia sp., ${ }^{26}$ is so similar to $\mathbf{2}$, the trivial name cyclocinamide B is proposed for $\mathbf{2}$. The published ${ }^{1} \mathrm{H}$ NMR spectra of cyclocinamide A (3) and cyclocinamide B (2) are almost identical, further

Table 1. NMR Data for Corticiamide $A(1)$ in $9: 1 \mathrm{CD}_{3} \mathrm{CN} / \mathrm{DMSO}-d_{6}(600 \mathrm{MHz})$

${ }^{a}$ Assignments are from gHMBC, gHSQC, and TOCSY spectra.
supporting the proposed structure for cyclocinamide B (2). The only major difference is the iSer OH, which Clark et al. assigned at δ 3.27. However, in cyclocinamide B (2) correlations in the HSQCTOCSY and HMBC spectra clearly indicate that the doublet at δ_{H} 6.00 can be assigned to this hydroxyl. Most likely, the shift may vary and is dependent on the sample preparation $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content, pH , etc.).

As a result of limited material Clark et al. ${ }^{26}$ were able to determine the absolute stereochemistry at only two of the four stereocenters of cyclocinamide A (3). Using a combination of acid hydrolysis and chiral TLC they assigned S stereochemistry for the

Br-Trp and Arg residues and suggested that, on the basis of biosynthetic considerations, the stereochemistry of the DAP and iSer residues should also be S. Although synthesis of $4 R, 11 R$ cyclocinamide A resulted in a product with a similar ${ }^{1} \mathrm{H}$ NMR, the spectrum was not identical to the natural product. ${ }^{27}$

Cyclocinamide B (2) was subjected to acid hydrolysis as described by Clark et al. ${ }^{26}$ However, these conditions proved too harsh and resulted in complete decomposition. Complete hydrolysis was achieved at $110{ }^{\circ} \mathrm{C}$ in 4 h with 6 N HCl in the presence of 0.1% phenol (to preserve the $5-\mathrm{Br}$-Trp residue). The hydrolysate was subjected to derivatization with $\mathrm{N} \mathrm{\alpha}$-(2,4-dinitro-5-fluorophe-

Table 2. NMR Data for Cyclocinamide B (2) in DMSO- d_{6} (400 MHz)

position	$\delta_{\text {C }}$	$\delta_{\text {H }}(J$ in Hz)	COSY	TOCSY	HMBC^{a}
OH		6.00 d (4.0)		3	5
1	171.1				
2		7.05 brt (5.0)	4	4,3	1
3	70.4	4.04 m	4, OH	4, 2, OH	
4	43.5	$3.35 \mathrm{~m}, 3.48 \mathrm{~m}$	2, 3	$3,2, \mathrm{OH}$	
5	171.6				
6		7.87 d (9.9)	7	7,18	7, 5
7	54.0	4.52 m	6,18	18, 6	$18,19,8,5$
8	173.5				
9		7.98 t (6.0)	10	11, 10	8
10	40.8	3.34 s	28, 11	11, 9, 28	
11	55.2	4.27 m	10,28	10, 9, 28	29
12	169.4				
13		7.89 d (9.2)	14	14, 15	12
14	50.0	4.56 m	13, 15	15, 13	15, 16, 12
15	37.1	2.26 dd (4.8, 15.6)	11	11, 13	14, 16, 1
15^{\prime}		2.45 dd ($7.4,15.6$)	11		14, 16, 1
16	172.6				
17		6.80 br s	17^{\prime}	17^{\prime}	16
17^{\prime}		7.28 br s	17	17	
18	28.5	2.95	7	7, 6	7, 8, 20, 19, 28
19	110.2				
20	126.0	7.15 d (1.7)	18, 21	21	19
21		11.1 br d (1.7)	20	20	$(19,28)$
22	135.5				
23	114.1	7.28 d (8.4)	26, 24	26, 24	28, 25
24	124.1	7.14 dd (1.8, 8.4)	26, 23	26, 23	28, 26, 25, 22
25	111.8				
26	121.4	7.63 d (1.8)	24, 23	23	19, 25, 24, 22
28	129.8				
28		8.09 d (7.6)	11	111, 10	29
29	169.7				
30	42.9	3.75 m, 3.83 m	31	31	29, 32
31		8.57 t (5.8)	30	30	34, 32
32	161.0				
33	125.2				
34	112.2	7.02 s			33, 36, 37, 32
35	107.9				
36	119.2				
37	34.1	3.76 s			33, 34, 36

${ }^{a} \mathrm{HMBC}$ correlations from proton(s) to the stated carbons.
nyl)-L-alaninamide (L-FDAA) and subsequent analysis by HPLC (Marfey's analysis). ${ }^{28,29}$ Reference compounds were prepared with commercially available amino acids utilizing both pure L-amino acids and DL mixtures. In each case the L-amino acid derivatives eluted before the D isomers. The results of the Marfey's analysis unambiguously proved the absolute stereochemistry for three of the four amino acids: D-Asp, L-DAP, and D-5-Br-Trp. Unfortunately, the retention times of L-FDAA-D-iSer and L-FDAA-Gly overlapped. To circumvent this problem, LCMS analysis of the $N \alpha-$ (2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA)-derivatized amino acids was undertaken. The greater lipophilicity of L-FDVA versus L-FDAA allowed for longer retention times and better separation. A coinjection with an L-FDVA-DL-iSer reference and the L-FDVAderivatized hydrolysate of $\mathbf{2}$ showed an enhancement of L-iSer over D-iSer and confirmed the presence of L-iSer in cyclocinamide B (2).

Both corticiamide A (1) and cyclocinamide B (2) have close structural resemblances to peptides isolated from sponges that are only distantly related, taxonomically, to Corticium. Thus, it seems likely that these two cyclic peptides may be produced by microorganisms associated with the Fijian Corticium sp.

Peptides related to corticiamide A (1), namely, the discodermins, halicylindramides, polydiscamide A, and microspinosamide A, are all known to be cytotoxic in the low $\mu \mathrm{M}$ range and to inhibit the growth of bacteria and fungi. ${ }^{17-22}$ In addition, microspinosamide A has been shown to inhibit the cytopathic effect of HIV-1 in CEMSS cells. ${ }^{22}$ Interestingly, the cyclic nature of these peptides is crucial to their bioactivity, with linear versions exhibiting a loss of activity
of at least 1 order of magnitude. It has been noted that this class of peptides exhibits a high degree of amphiphilic character and that this may lead to observed increases in the membrane permeability of cells and tissues treated with discodermin A. ${ }^{30}$ Cyclocinamide A (3) was reported to be highly cytotoxic in vitro and exhibited selective cytoxicity toward solid tumors in the soft agar colony formation disk diffusion assay; however, cyclocinamide B (2) had no cytotoxicity against HCT-116 cells.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Jasco DIP-370 polarimeter. UV spectra were obtained using a Perkin-Elmer Lambda2 UV/vis spectrometer. IR spectra were recorded on a JASCO FTIR-420 spectrophotometer. NMR data for 1 were collected using either a Varian INOVA $500\left({ }^{1} \mathrm{H} 500 \mathrm{MHz},{ }^{13} \mathrm{C} 125\right.$ $\mathrm{MHz})$ NMR spectrometer with a 3 mm Nalorac MDBG probe or a Varian INOVA $600\left({ }^{1} \mathrm{H} 600 \mathrm{MHz},{ }^{13} \mathrm{C} 150 \mathrm{MHz}\right)$ NMR spectrometer equipped with a $5 \mathrm{~mm}{ }^{1} \mathrm{H}\left[{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right]$ triple resonance cold probe with a z-axis gradient and utilized residual solvent signals for referencing (δ_{H} $1.94, \delta_{\mathrm{C}} 118.3$ for $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$. NMR data for $\mathbf{2}$ were obtained using a Varian Mercury $400\left({ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{13} \mathrm{C} 100 \mathrm{MHz}\right)$ instrument equipped with a 5 mm Nalorac probe and utilized residual solvent signals for referencing ($\delta_{\mathrm{H}} 2.49, \delta_{\mathrm{C}} 39.7$ for DMSO- d_{6}). LCMS analyses were conducted with a Micromass Q-Tof micro mass spectrometer and a Waters 2795 HPLC. High-resolution mass spectra (HRMS) were obtained using a Bruker (Billerica, MA) APEXII FTICR mass spectrometer equipped with an actively shielded 9.4 T superconducting magnet (Magnex Scientific Ltd., UK), an external Bruker APOLLO ESI source, and a Synrad 50 W CO 2 CW laser. Nanoelectrospray in both positive and negative modes was employed. Typically, a $5 \mu \mathrm{~L}$ sample was loaded into the nanoelectrospray tip (New Objective, Woburn, MA), and a high voltage, about 1000 V , was applied between the nanoelectrospray tip and the capillary. Mass spectra were internally/ externally calibrated using HP tuning mix. For FTMS/MS experiments, precursor ions were isolated using correlated sweep and then dissociated using SORI-CID. Analytical and semipreparative HPLC was accomplished utilizing a Beckman System Gold 126 solvent module and 168 PDA detector. All commercially available reagents and amino acid standards were purchased and used without additional purification.

Biological Material. Corticium sp. was collected by scuba. Bulk material was frozen at $-4{ }^{\circ} \mathrm{C}$ until return to The University of Utah, where it was stored at $-20^{\circ} \mathrm{C}$ until required. All of our Fijian collections of Corticium sp. (Homosclerophorida, Plakinidae) are morphologically indistinguishable. It is a common undescribed species of Corticium with a widespread Indo-Pacific distribution. The sponge is encrusting, contracting considerably after collection; it has a black exterior and slighter lighter interior. Sample FJ01-2-014 was collected in the lower Yasawa group ($18^{\circ} 42.041^{\prime} \mathrm{S}, 178^{\circ} 30.309^{\prime} \mathrm{E}$), and sample FJ02-13-059 was from the Great Astrolabe Reef ($17^{\circ} 10.211^{\prime}$ S, $177^{\circ} 17.720^{\prime}$ E); voucher specimens are maintained at the University of Utah.

Extraction and Isolation. Frozen sponge (70 g wet weight) from the 2002 collection (sample FJ02-13-059) was extracted with MeOH and the solvent removed in vacuo. The crude extract was then partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the EtOAc extracts were further separated on HP20ss resin $\left(\mathrm{H}_{2} \mathrm{O}\right.$ to MeOH in 25% steps, 10 mL fractions). The fraction eluting with $1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ was subjected to multiple rounds of RPHPLC as follows: isocratic $2: 3 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ for 20 min , followed by a gradient to $100 \% \mathrm{MeOH}$ over $40 \mathrm{~min}, 3.5$ $\mathrm{mL} / \mathrm{min}$, Phenomenex phenylhexyl, $10 \times 250 \mathrm{~mm}$. The fraction that eluted with $80-85 \% \mathrm{MeOH}$ contained corticiamide A (1) and was subjected to RPHPLC employing a gradient of $1: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ to $4: 1$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ in $20 \mathrm{~min}, 3.5 \mathrm{~mL} / \mathrm{min}$, Phenomenex $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}$. The corticiamide A (1)-containing fraction eluted with $52-56 \% \mathrm{CH}_{3}{ }^{-}$ CN and was subjected to a gradient from 3:7 $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \%$ aq TFA to 3:2 $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \%$ aq TFA over 20 min , and then to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 5 min . Corticiamide A (1, 0.8 mg) eluted at 15 min .

Frozen sponge (100 g wet weight) from the 2001 collection (sample FJ01-2-014) was extracted with MeOH and the solvent removed in vacuo. The crude extract was then dissolved in 100 mL of 10% aqueous MeOH and extracted with hexanes $(3 \times 100 \mathrm{~mL})$. An additional 35 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the aqueous MeOH and extracted with CHCl_{3}
$(3 \times 100 \mathrm{~mL})$. The CHCl_{3} fraction was further separated by RP C_{18} flash chromatography using a $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ gradient in 10% steps. Fraction 10 contained 9.6 mg of $\mathbf{2}$.

Corticiamide A (1): $[\alpha]_{\mathrm{D}}^{21}+5(c \quad 0.16, \mathrm{MeOH})$; UV (MeOH) $\lambda_{\text {max }}$ $\mathrm{nm}(\log \epsilon) 201$ (4.59), 230 (4.23), 275 (3.5); IR (KRS-5 cell, DMSO) $\nu_{\max } 3465,2971,1662,1250,1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $[\mathrm{M}+2 \mathrm{H}]^{2+} \mathrm{m} / \mathrm{z} 948.32495$ (calcd 948.32465 for $\mathrm{C}_{80} \mathrm{H}_{114} \mathrm{Br}_{2} \mathrm{~N}_{20} \mathrm{O}_{22} \mathrm{~S}^{2+}$), $[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+} \mathrm{m} / \mathrm{z} 959.31633$ (calcd 959.31562 for $\mathrm{C}_{80} \mathrm{H}_{113} \mathrm{Br}_{2} \mathrm{~N}_{20} \mathrm{NaO}_{22} \mathrm{~S}^{2+}$).

Cyclocinamide B (2): $[\alpha]_{\mathrm{D}}^{21}+9.6$ (c 0.033 , MeOH); UV (MeOH) $\lambda_{\text {max }} \mathrm{nm}(\log \epsilon) 201$ (3.53), 274 (2.43); IR (KRS-5 cell, DMSO) $\nu_{\text {max }}$ 3436, 2973, 2480, 1661, 1372, 1251, 1030, $602 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 2; HRESIMS m/z 784.10084 (calcd 784.10070 for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{8} \mathrm{BrCl}_{2}{ }^{+}$.

Acid Hydrolysis and FDAA Analysis of Cyclocinamide B (2). To a thick walled microvial containing $100 \mu \mathrm{~g}(0.13 \mu \mathrm{~mol})$ of 2 was added $250 \mu \mathrm{~L}$ of 6 N HCl containing 0.1% phenol (w/v). The vial was sealed and heated at $110^{\circ} \mathrm{C}$ for 4 h . The reaction was allowed to cool to room temperature and was concentrated to dryness. The resulting dry residue was dissolved in $100 \mu \mathrm{~L}$ of water, and subsequently 300 $\mu \mathrm{L}$ of 1 M aqueous NaHCO_{3} was added followed by $250 \mu \mathrm{~L}$ of a 1% solution of L-FDAA in acetone (w/v). This mixture was heated at 50 ${ }^{\circ} \mathrm{C}$ for 1.5 h , cooled to room temperature, and diluted with an equal volume of $\mathrm{CH}_{3} \mathrm{CN}$. The L-FDAA derivatives were separated by HPLC ($1.0 \mathrm{~mL} / \mathrm{min}$, Phenomenex $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$) using a linear gradient of $10 \% \mathrm{CH}_{3} \mathrm{CN}$ in $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}(\mathrm{pH}=5)$ to $50 \% \mathrm{CH}_{3} \mathrm{CN}$ in $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ over 60 min . The absolute stereochemistry was determined by comparing retention times of L and D, L amino acid standards derivatized with L-FDAA and the derivatized hydrolysate of 2. HPLC retention times in minutes for the amino acid standards: L-Asp (10.9), D-Asp (13.6), L-iSer (19.9), D-iSer (20.6), Gly (20.4), L-DAP (39.3), D-DAP (40.3), L-5-BrTrp (39.6), D-5-BrTrp (43.3). HPLC retention times in minutes for L-FDAA-derivatized amino acids of $\mathbf{2}$: D-Asp (13.9), L-DAP (39.2), D-5-BrTrp (42.5).

FDVA Derivatization of the Hydrolysate of Cyclocinamide B (2). The hydrolysate of $\mathbf{2}$ was obtained as described above and was concentrated to dryness and dissolved in $75 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$. Subsequently, $25 \mu \mathrm{~L}$ of 1 M aqueous NaHCO_{3} was added followed by the addition of $100 \mu \mathrm{~L}$ of a 1% solution of L-FDVA in acetone (w/v). The reaction was heated at $40^{\circ} \mathrm{C}$ for 1 h and then neutralized with $20 \mu \mathrm{~L}$ of 1 N HCl .

LCMS Analysis of the FDVA Derivatives. The separation of L and D,L FDVA derivatives utilized a $2 \times 50 \mathrm{~mm}, 3 \mu \mathrm{~m}$, Phenomenex C 18 column at $20^{\circ} \mathrm{C}$. A linear gradient $(0.2 \mathrm{~mL} / \mathrm{min})$ using 0.1% acetic acid $/ 99 \% \mathrm{CH}_{3} \mathrm{CN}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ over 75 min was used. Retention times in minutes for the reference D- and L-iSer-L-FDVA: L-iSer (32), D-iSer (33). Retention time for L-FDVA derivatives of 2: L-iSer (31.9). Additionally, a coinjection with a $1: 4$ mixture of dl-iSer-L-FDVA standards to L-FDVA derivatives of 2 showed an enhancement of the peak corresponding to L-FDVA-L-iSer.

HCT-116 Cytotoxicity Assay. The assay was performed as previously described. ${ }^{31}$

Acknowledgment. The authors are grateful to J. J. Skalicky for help in obtaining NMR data and would like to thank Drs. G. T. Carter and F. E. Koehn for their kind support. The authors would like to acknowledge the NIH, RR06262 and RR14768, and NSF grant DBI0002806 for funding NMR instrumentation in the University of Utah Health Sciences NMR facility. This research was funded by NIH grant CA 067786.

Supporting Information Available: A picture of a representative Fijian Corticium sp. is provided. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) McCarthy, P. J.; Pitts, T. P.; Gunawardana, G. P.; Kelly-Borges, M.; Pomponi, S. J. Nat. Prod. 1992, 55, 1664-1667.
(2) Jurek, J.; Scheuer, P. J. J. Nat. Prod. 1994, 57, 1004-1007.
(3) De Marino, S.; Iorizzi, M.; Zollo, F.; Roussakis, C.; Debitus, C. Eur. J. Org. Chem. 1999, 3, 697-701.
(4) Lee, H. S.; Seo, Y.; Rho, J. R.; Shin, J.; Paul, V. J. J. Nat. Prod. 2001, 64, 1474-1476.
(5) Borbone, N.; De Marino, S.; Iorizzi, M.; Zollo, F.; Debitus, C.; Esposito, G.; Iuvone, T. J. Nat. Prod. 2002, 65, 1206-1209.
(6) Ridley, C. P.; Faulkner, D. J. J. Nat. Prod. 2003, 66, 1536-1539.
(7) De Marino, S.; Zollo, F.; Iorizzi, M.; Debitus, C. Tetrahedron Lett. 1998, 39, 7611-7614.
(8) Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M. J. Am. Chem. Soc. 2006, 128, 3148-3149.
(9) McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Kruppa, G.; Feng, X.; Lotvin, J. A.; Siegel, M. M. Anal. Chem. 2003, 75, 2730-2739.
(10) Breci, L. A.; Tabb, D. L.; Yates, J. R., III; Wysocki, V. H. Anal. Chem. 2003, 75, 1963-1971.
(11) Nogle, L. M.; Williamson, R. T.; Gerwick, W. H. J. Nat. Prod. 2001, 64, 716-719.
(12) Hamann, M. T.; Otto, C. S.; Scheuer, P. J.; Dunbar, D. C. J. Org. Chem. 1996, 61, 6594-6600.
(13) Harrigan, G. G.; Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Nagle, D. G.; Paul, V. J. J. Nat. Prod. 1999, 62, 655-658.
(14) Capon, R. J.; Ford, J.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Nat. Prod. 2002, 65, 358-363.
(15) Matsunaga, S.; Fusetani, N.; Konosu, S. Tetrahedron Lett. 1984, 25, 5165-5168.
(16) Ryu, G.; Matsunaga, S.; Fusetani, N. Tetrahedron Lett. 1994, 35, 8251-8254.
(17) Ryu, G.; Matsunaga, S.; Fusetani, N. Tetrahedron 1994, 50, 1340913416.
(18) Li, H.; Matsunaga, S.; Fusetani, N. J. Med. Chem. 1995, 38, 338343.
(19) Li, H.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1995, 59, $163-$ 166.
(20) Gulavita, N. K.; Gunasekera, S. P.; Pomponi, S. A.; Robinson, E. V. J. Org. Chem. 1992, 57, 1767-1772.
(21) Rashid, M. A.; Gustafson, K. R.; Cartner, L. K.; Shigematsu, N.; Pannell, L. K.; Boyd, M. R. J. Nat. Prod. 2001, 64, 117-121.
(22) Capon, R. J.; Rooney, F.; Murray, L. M.; Collins, E.; Sim, A. T. R.; Rostas, J. A. P.; Butler, M. S.; Carroll, A. R. J. Nat. Prod. 1998, 61, 660-662.
(23) Djura, P.; Faulkner, D. J. J. Org. Chem. 1980, 45, 735-737.
(24) Hernández Franco, L.; Joffe, E. B de K.; Puricelli, L.; Tatian, M.; Seldes, A. M.; Palermo, J. A. J. Nat. Prod. 1998, 61, 1130-1132.
(25) Lee, N.-K.; Fenical, W.; Lindquist, N. J. Nat. Prod. 1997, 60, 697699.
(26) Clark, W. D.; Corbett, T.; Veleriote, F.; Crews, P. J. Am. Chem. Soc. 1997, 119, 9285-9286.
(27) Grieco, P. A.; Reilly, M. Tetrahedron Lett. 1998, 39, 8925-8928.
(28) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
(29) B’Hymer, C. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 30853094.
(30) Sato, K.; Horibe, K.; Amano, K.; Mitsui-Saito, M.; Hori, M.; Matsunaga, S.; Fusetani, N.; Ozaki, H.; Karaki, H. Toxicon 2001, 39, 259-264.
(31) Ratnayake, A. S.; Bugni, T. S.; Feng, X.; Harper, M. K.; Skalicky, J. J.; Mohammed, K. A.; Andjelic, C. D.; Barrows, L. R.; Ireland, C. M. J. Nat. Prod. 2006, 69, 1582-1586.

NP060489V

[^0]: * To whom correspondence should be addressed. Tel: 8015818305. Fax: 801585 6208. E-mail: cireland @ pharm.utah.edu.
 ${ }^{\dagger}$ University of Utah.
 \ddagger Wyeth Research.

